The mathematics of bell ringing

Anna Nelson
GSAC Colloquium
University of Utah
February 25th, 2020

Outline

- Introduction to bell ringing and change ringing
- Specific types of change ringing sequences
- Mathematics of change ringing
- Steinhaus-Johnson-Trotter algorithm
- Cayley graphs

Introduction

Why bells?

- I have been ringing handbells for almost 20 years

- I currently:
- ring with an adult choir,
- direct a middle school choir,
- assist in directing a high school choir.

History of handbells

- Handbells originated in 1690s in England for change ringers to practice peals outside the towers
- Came to the United States in 1901, music specifically arranged for handbell choirs around 1960s
- Handbell choirs are measured by octave ranges and each player rings "2" notes

The Wesley Bell Ringers, Salt Lake City UT

History of change ringing

- English full-circle tower bells were invented in early 1600 s
- Ringing the bells, as opposed to chiming, is called "change ringing"

WHEREIN
Is laid down plain and eafie Rules for Ringing all forts of Plain Changes.

Togetber with
Directions forPricking and Ringing all Crofs reals; with a full Difcovery of the Myltery and Grounds of each Peal.

A S a L SO
Inftructions for Hanging of Bells, with all things belonging thereunto.
By a Lover of that $A R T$.
A. Pcrfii Sat. v.

Difee: Jed ira cadat na/o, rugofague fanai,
$L O N \mathcal{N O N}$,
Printed by W. G. for Fabian Stedmar, at his noop in St. Druffar,s Churchyard in Elee!freet. 1668.

Change ringing

Definition: An extent, or a full peal, is the ability to ring a tower's bells in every possible order

Example: Suppose your bell tower has 3 bells

1	2	3
3	2	1
2	1	3
3	1	2
1	3	2
2	3	1

An extent would involve 6
sequences! $3 \times 2 \times 1=6$

Change ringing

- What if your bell tower has $\mathbf{4}$ bells?

$$
4!=4 \times 3 \times 2 \times 1=24 \text { sequences (around } 30 \mathrm{sec} \text {.) }
$$

- What if your bell tower has $\mathbf{6}$ bells?

$$
6!=6 \times 5 \times 4 \times 3 \times 2 \times 1=720 \text { sequences (about } 25 \mathrm{~min} \text {.) }
$$

- What if your bell tower has 8 bells?

$$
8!=40320 \text { sequences (18 hours in England, 1963) }
$$

- For \boldsymbol{n} bells, the sequences are elements of the symmetric group, S_{n}

Change ringing nomenclature

n	Name	$n!$
3	Singles	6
4	Minimus	24
5	Doubles	120
6	Minor	720
7	Triples	5,040
8	Major	40,320
9	Caters	362,880
10	Royal	$3,628,800$
11	Cliques	$39,916,800$
12	Maximus	$479,001,600$

Change Ringing Technique:
 Plain change

Definitions of change ringing

- Physical constraints:
- You can only swap neighboring bells
- No repeating sequences
- Want to start and end with bells in highest to lowest order
- Definition: A true extent is an extent with no repeated sequences
- Definition: A round is a sequence of bells in highest to lowest order (the "identity element")
- Definition: A plain change is a change ringing technique where one bell is swapped with its neighbor

Ring a true extent on 3 bells

- Example: Let's go back to our tower of three bells Using cycle notation and Cauchy's two line notation, we define plain changes as

$$
\begin{aligned}
& a=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)(3)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
& b=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=(1)\left(\begin{array}{ll}
2 & 3
\end{array}\right)=\left(\begin{array}{ll}
2 & 3
\end{array}\right)
\end{aligned}
$$

Ring a true extent on 3 bells

- Example: Let's go back to our tower of three bells. Using only plain changes, $\quad a=(12)$

$$
b=(23)
$$

	1	2	3
a	2	1	3
b	2	3	1
a	3	2	1
b	3	1	2
a	1	3	2
b	1	2	3

Triangle denoting positions

Change ringing on 4 bells

- Example: What if we had 4 bells in our tower and rang only plain changes?

$$
\begin{aligned}
& a=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)=(1)(2)(34)=(34) \\
& b=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 2 & 4
\end{array}\right)=(1)(23)(4)=(23) \\
& c=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{array}\right)=(12)(3)(4)=(12)
\end{aligned}
$$

Plain changes on 4 bells (Minimus)

	1	2	3	4	No.
a	1	2	4	3	1
b	1	4	2	3	2
c	4	1	2	3	3
a	4	1	$\underline{3}$	$\underline{2}$	4
c	1	4	3	2	5
b	1	$\underline{3}$	4	2	6
a	1	3	$\underline{2}$	4	7
c	$\underline{3}$	1	2	4	8
a	3	1	4	$\underline{2}$	9
b	3	4	1	2	10
c	4	$\underline{3}$	1	2	${ }^{11}$

	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$	
\mathbf{a}	4	3	2	1	12
\mathbf{c}	3	4	2	1	13
\mathbf{b}	3	2	4	1	14
\mathbf{a}	3	2	1	4	15
\mathbf{c}	2	3	1	4	16
\mathbf{a}	2	3	4	1	17
\mathbf{b}	2	4	3	1	18
\mathbf{c}	4	2	3	1	19
\mathbf{a}	4	2	1	3	20
\mathbf{c}	2	4	1	3	21
\mathbf{b}	2	1	4	3	22
\mathbf{a}	2	1	3	4	23
\mathbf{c}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	24

Ring a true extent with 4 bells, beginning and ending in rounds!

Mathematics and plain changing

Steinhaus-Johnson-Trotter algorithm

- In 1963, was published to generate all permutations of n elements
- Recursive algorithm: Sequence of permutations for n can be formed from sequence of permutations for $n-1$ by placing n into each possible position
- If permutation on $n-1$ is even, then n is placed in descending order from n to 1
- Else, n is placed in ascending order from 1 to n

SJT Algorithm example

- Example: SJT with 4 elements

1. Start with even and odd permutations of 3 elements
231
132
312
123
213
321

Even
(even \# of
swaps)

Odd
(odd \# of swaps)

SJT Algorithm example

- Example: SJT with 4 elements

2. Place 4 in descending order for even permutations, ascending order for odd permutations

231	2314	4132
312	2341	1432
123	2431	1342
	4231	1324

Even
(even \# of
swaps)

2314	4132	$\mathbf{1 3 2}$
2341	1432	$\leftarrow 213$
2431	1342	
4231	1324	321

Odd
(odd \# of swaps)

SJT Algorithm example:

- Example: SJT with 4 elements

2. Place 4 in descending order for even permutations, ascending order for odd permutations
This enumerates plain changes!

231
312

Even
(even \# of
swaps)

swaps)

SJT Algorithm example: 4 elements

Even	1234
	1243
	1423
	4123
Odd	4132
	1432
	1342
	1324
Even	3124
	3142
	3412
	431

Odd	3214
	3241
	3421
	4321
Even	4231
	2431
	2341
	2314
Odd	2134
	2143
	2413
	4213

Other change ringing techniques

More moves!

- Now, let's allow multiple swaps to in one move
- Definition: A cross-change involves swapping multiple bells in one move

$$
c=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right)
$$

- Definition: A plain hunt is a sequence of changes involving a cross-change then a plain change

$$
b=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 2 & 4
\end{array}\right)=(1)(23)(4)=(23)
$$

Plain hunt on four

						No.
	Start	1	2	3	4	1
	c	2	1	4	3	2
	b	2	4	1	3	3
	c	4	2	3	1	4
$b=(23)$	b	4	3	2	1	5
	c	3	4	1	2	6
	b	3	1	4	2	7
	c	1	3	2	4	8
	b	1	2	3	4	9

Begins and ends in rounds, but is not an extent

Plain hunt and group theory

- Definition: A group is a set with an operation - that can combine elements in the group to form another element and satisfy

1. Closure: $\forall a, b \in G, a \cdot b \in G$
2. Associativity: $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
3. Identity element: $\exists e \in G$ s.t. $a \cdot e=e \cdot a=a$
4. Inverse element: $\forall a, \exists b=a^{-1}$ s.t. $a \cdot b=b \cdot a=1$

- Moves in plain hunt correspond to the Dihedral group of four elements, D_{4}, the set of symmetries (rotations, reflections) of a square

Dihedral group, D_{4}

Dihedral group, D_{4}

Dihedral group, D_{4}

- Can we extend the plain hunt on four to an extent?

Plain hunt on four, edited

No.

Start	1	2	3	4	1
\mathbf{c}	2	1	4	3	2
\mathbf{b}	2	4	1	3	3
\mathbf{c}	4	2	3	1	4
\mathbf{b}	4	3	2	1	5
\mathbf{c}	3	4	1	2	6
\mathbf{b}	3	1	4	2	7
c	1	3	$2 . . .4$.	8	
a	1	3	4	2	8

Rather than plain change the middle position, plain change the last two!

$$
\begin{gathered}
c=(12)(34) \\
b=\binom{2}{3} \\
a=\left(\begin{array}{l}
3
\end{array}\right)
\end{gathered}
$$

The Plain Bob Minimus is generated by $\Delta=\{a, b, c\}$

Plain Bob Minimus

			2	3		1		a	1	3		4	2	9	a	1	4	2	3		${ }^{17}$
c	2	1	1	4	3	2		c	3	1		2	4	10	c	4	1	3	2		18
b	2			1	3			b	3	2		1	4	${ }^{11}$	b	4	3	1	2		19
c	4	4	2	3	1				2	3		4	1	${ }^{12}$	c	3	4	2	1		20
b	4		3	2	1			b	2	4		3	1	${ }^{13}$	b	3	2	4	1		${ }^{21}$
c	3	${ }^{\text {® }}$	4	1	2	${ }^{6}$		c	4	2		1	3	14	c	2	3	1	4		22
b	3	3	1^{\prime}	4	2			b	4	1		2	3	15	b	2	1	3	4		23
c	1	,	3	2	4			c	1	4		3	2	16	c	1	2	4	3		${ }^{24}$
Transition sequence: $(c b)^{3} c a=(243)$																					

Other changes

Name of method \quad Transition sequence

Plain Bob		
Reverse Bob	$(c b)^{3} c a$	
Double Bob	$c b c d(c b)^{2}$	$c=\left(\begin{array}{ll}1 & 2\end{array}\right)\binom{3}{4}$
Canterbury	$c b c d c b c a$	$b=\binom{2}{3}$
Reverse Canterbury	$d b(c b)^{2} d a$	$a=\left(\begin{array}{ll}3 & 4\end{array}\right)$
Double Canterbury	$d b a d a b d a$	$d=\binom{1}{1}$
Single Court	$d b(c b)^{2} d b$	
Reverse Court	$c b(a b)^{2} c b$	
Double Court	$d b(a b)^{2} d b$	
St. Nicholas	$d b c d c b d a$	
Reverse St. Nicholas	$c b a d a b c a$	

Change ringing and graph theory

Change ringing and graph theory

- We can also look at true extents using graph theory!
- Definition: A graph is a set of vertices, edges, and a function that defines an ordered pair of vertices to an edge

Undirected

Directed

Change ringing and graph theory

- Definition: A Cayley color graph of a group G with respect to a generating set (set of moves) is a colored directed graph where

1. Every vertex is an element in G
2. Every move is assigned to a color
3. Edges connect vertices attainable from moves in generating set

Example: Cayley color graph for 3-bell with plain change

Change ringing and graph theory

- Definition: A Hamiltonian cycle is a graph that visits every vertex exactly once and returns to the original vertex
- True extents are Hamiltonian cycles!
- Theorem: Let S_{n} be the set of bell permutations with n bells. An n-bell extent, fulfilling change ringing requirements and using given transitions, can be rung if and only if the Cayley color

Hamilton graph of S_{n} is Hamiltonian

Cayley color graph examples

Example: Cayley color graph for 4-bell with plain changes

Cayley color graph examples

	1	2	3	4	1
C	2	1	4	3	2
b	2	4	1	3	3
C	4	2	3	1	4
b	4	3	2	1	5
C	3	4	1	2	6
b	3	1	4	2	7
C	1	3	2	4	8

Example: Cayley color graph for Plain Bob Minimus

Even more changes!

References

- Sturman, Robert. The mathematics of bell-ringing (Beamer slides), 2016. Retrieved from http://www1.maths.leeds.ac.uk/~rsturman/talks/ gravity fields.pdf
- Russell, Emily. Change Ringing: The Beautiful Intersection Between Math and Music (YouTube video), 2015. Retrieved from https://www.youtube.com/ watch? $\mathrm{v}=\mathrm{f5GmUxI2NaU}$
- Intermont, Michele and Aileen Murphy. An Application of Group Theory to Change Ringing. The College Mathematics Journal 42(3): 223-228, 2011
- White, Arthur T. Ringing the cosets. The American Mathematical Monthly 94(8): 721-746, 1987.
- Johnson, Selmer M. Generation of permutations by adjacent transposition. Mathematics of Computation. 17: 282-285, 1963.
- Weber, Fabia. Campanology - Ringing the changes. Bachelor Thesis, Swiss Federation Institute of Technology, Zurich.

