The mathematics of bell ringing

Anna Nelson GSAC Colloquium University of Utah February 25th, 2020

- Introduction to bell ringing and change ringing
- Specific types of change ringing sequences
- Mathematics of change ringing
 - Steinhaus–Johnson–Trotter algorithm
 - Cayley graphs

Introduction

Why bells?

I have been ringing handbells for almost 20 years

- I currently:
 - ring with an adult choir,
 - direct a middle school choir,
 - assist in directing a high school choir.

History of handbells

- Handbells originated in 1690s in England for **change ringers** to practice peals outside the towers
- Came to the United States in 1901, music specifically arranged for handbell choirs around 1960s
- Handbell choirs are measured by octave ranges and each player rings "2" notes

The Wesley Bell Ringers, Salt Lake City UT

History of change ringing

- English full-circle tower bells were invented in early 1600s
- Ringing the bells, as opposed to chiming, is called "change ringing"

Change ringing

Definition: An extent, or a full peal, is the ability to ring a tower's bells in every possible order

Example: Suppose your bell tower has 3 bells

 $\begin{array}{cccccccc} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 3 & 2 \\ 2 & 3 & 1 \end{array}$

An extent would involve 6 sequences! $3 \times 2 \times 1 = 6$

Change ringing

• What if your bell tower has 4 bells?

 $4! = 4 \times 3 \times 2 \times 1 = 24$ sequences (around 30 sec.)

• What if your bell tower has 6 bells?

 $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$ sequences (about 25 min.)

- What if your bell tower has 8 bells? 8! = 40320 sequences (18 hours in England, 1963)
- For *n* bells, the sequences are elements of the symmetric group, *S_n*

Change ringing nomenclature

п	Name	n!
3	Singles	6
4	Minimus	24
5	Doubles	120
6	Minor	720
7	Triples	5,040
8	Major	40,320
9	Caters	362,880
10	Royal	3,628,800
11	Cliques	39,916,800
12	Maximus	479,001,600

Change Ringing Technique: Plain change

Definitions of change ringing

- Physical constraints:
 - You can only swap neighboring bells
 - No repeating sequences
 - Want to start and end with bells in highest to lowest order
- Definition: A true extent is an extent with no repeated sequences
- **Definition:** A **round** is a sequence of bells in highest to lowest order (the "identity element")
- **Definition:** A **plain change** is a change ringing technique where one bell is swapped with its neighbor

Ring a true extent on 3 bells

 Example: Let's go back to our tower of three bells
 Using cycle notation and Cauchy's two line notation, we define plain changes as

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (1 \ 2)(3) = (1 \ 2)$$
$$b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (1)(2 \ 3) = (2 \ 3)$$

Ring a true extent on 3 bells

- Example: Let's go back to our tower of three bells. Using only plain changes, $a = (1 \ 2)$

Triangle denoting positions

Change ringing on 4 bells

• Example: What if we had 4 bells in our tower and rang only plain changes?

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} = (1)(2)(34) = (34)$$

$$b = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} = (1)(2\ 3)(4) = (2\ 3)$$

$$c = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} = (1\ 2)(3)(4) = (1\ 2)$$

Plain changes on 4 bells (Minimus)

	1	2	3	4	No.		4	3	1	2	
а	1	2	4	3	1	а	4	3	2	1	12
b	1	4	<u>2</u>	<u>-</u> 3	2	С	3	4	2	1	13
C	1	1	2	3	3	b	3	2	4	1	14
	4	<u> </u>		•		а	3	2	1	4	15
а	4	1	<u>3</u>	<u>2</u>	4	С	2	3	1	4	16
С	<u>1</u>	4	3	2	5	а	2	3	4	1	17
b	1	<u>3</u>	4	2	6	b	2	4	3	1	18
а	1	3	<u>2</u>	4	7	С	4	2	3	1	19
С	<u>3</u>	<u>1</u>	2	Λ	8	а	4	2	1	3	20
				- 2	9	С	2	4	1	3	21
a	3	1	4	<u> </u>		b	2	1	4	3	22
b	3	4	<u>1</u>	2	10	а	2	1	3	4	23
С	4	<u>3</u>	1	2	11	С	1	2	3	4	24

Ring a true extent with 4 bells, beginning and ending in rounds!

Mathematics and plain changing

Steinhaus–Johnson–Trotter algorithm

- In 1963, was published to generate all permutations of n elements
- Recursive algorithm: Sequence of permutations for n can be formed from sequence of permutations for n – 1 by placing n into each possible position
- If permutation on n 1 is even, then n is placed in descending order from n to 1
- Else, *n* is placed in ascending order from 1 to *n*

SJT Algorithm example

- Example: SJT with 4 elements
 - 1. Start with even and odd permutations of 3 elements

 2 3 1
 1 3 2

 3 1 2
 2 1 3

 1 2 3
 3 2 1

 Even
 Odd

 (even # of swaps)
 0dd # of swaps)

SJT Algorithm example

• Example: SJT with 4 elements

2. Place 4 in descending order for even permutations, ascending order for odd permutations

231	231 4	4 1 3 2	132
312	23 4 1	1 4 3 2	$\leftarrow 213$
123	2 4 31	13 4 2	321
	4 2 3 1	1 3 2 4	
Even			Odd
(even # of			(odd
swaps)			swaps)

SJT Algorithm example:

• Example: SJT with 4 elements

Even

(even # of

swaps)

2. Place 4 in descending order for even permutations, ascending order for odd permutations This enumerates plain changes!

231	2314	4132	132
312	2341	1432	213
123	2431	1342	2 I S 3 2 1
	4 2 3 1	1324	J Z I

Odd (odd # of swaps)

SJT Algorithm example: 4 elements

Even	1234	Odd	3 2 1 4
	1 2 4 3		3 2 4 1
	1423		3 4 21
	4 1 2 3		4 3 2 1
Odd	4 1 3 2	Even	4 2 3 1
	1432		2 4 3 1
	1 3 4 2		23 4 1
	1 3 2 4		231 4
Even	312 4	Odd	2134
	3 1 4 2		21 4 3
	3412		2 4 1 3
	4 3 1 2		4 2 1 3

Other change ringing techniques

More moves!

- Now, let's allow multiple swaps to in one move
- Definition: A cross-change involves swapping multiple bells in one move

$$c = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = (1\ 2)(3\ 4)$$

• **Definition:** A **plain hunt** is a sequence of changes involving a cross-change then a plain change

$$b = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} = (1)(2\ 3)(4) = (2\ 3)$$

Plain hunt on four

Begins and ends in rounds, but is not an extent

Plain hunt and group theory

- Definition: A group is a set with an operation that can combine elements in the group to form another element and satisfy
 - **1.** Closure: $\forall a, b \in G, a \cdot b \in G$
 - 2. Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - **3.** Identity element: $\exists e \in G \text{ s.t. } a \cdot e = e \cdot a = a$
 - 4. Inverse element: $\forall a, \exists b = a^{-1} \text{ s.t. } a \cdot b = b \cdot a = 1$
- Moves in plain hunt correspond to the Dihedral group of four elements, D_4 , the set of symmetries (rotations, reflections) of a square

Dihedral group, D_4

Dihedral group, D_4

plain change (b)

Dihedral group, D_4

• Can we extend the plain hunt on four to an extent?

Plain hunt on four, edited

Rather than plain change the middle position, plain change the last two!

$$c = (1\ 2)(3\ 4)$$

 $b = (2\ 3)$
 $a = (3\ 4)$

The Plain Bob Minimus is generated by $\Delta = \{a, b, c\}$

Plain Bob Minimus

										/							
	1	2	3	4	1	а	1	3	4	2	9	а	1	4	2	3	17
С	2	1	4	3	2	С	3	1	2	4	10	С	4	1	3	2	18
b	2	4	1	3	3	b	3	2	1	4	11	b	4	3	1	2	19
С	4	2	3	1	4	С	2	3	4	1	12	С	3	4	2	1	20
b	4	3	2	1	5	b	2	4	3	1	13	b	3	2	4	1	21
С	3	4	1	2	6	С	4	2	1	3	14	С	2	3	1	4	22
b	3	1	4	2	7	b	4	1	2	3	15	b	2	1	3	4	23
С	1	3	2	4	8	С	1	4	3	2	16	С	1	2	4	3	24
Tr	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																

Transition sequence: (cb) ca = (243)

Other changes

Name of method	Transition sequence
Plain Bob	(<i>cb</i>) ³ <i>ca</i>
Reverse Bob	cbcd(cb) ²
Double Bob	cbcdcbca
Canterbury	cbadabcb
Reverse Canterbury	db(cb)²da
Double Canterbury	dbadabda
Single Court	db(cb)²db
Reverse Court	cb(ab)²cb
Double Court	db(ab)²db
St. Nicholas	dbcdcbda
Reverse St. Nicholas	cbadabca

 $c = (1 \ 2)(3 \ 4)$ $b = (2 \ 3)$ $a = (3 \ 4)$ $d = (1 \ 2)$

- We can also look at true extents using graph theory!
- **Definition:** A **graph** is a set of vertices, edges, and a function that defines an ordered pair of vertices to an edge

Undirected

Directed

- Definition: A Cayley color graph of a group G with respect to a generating set (set of moves) is a colored directed graph where
 - 1. Every vertex is an element in G
 - 2. Every move is assigned to a color
 - **3**. Edges connect vertices attainable from moves in generating set

- Definition: A Hamiltonian cycle is a graph that visits every vertex exactly once and returns to the original vertex
 - True extents are Hamiltonian cycles!
- Theorem: Let S_n be the set of bell permutations with n bells. An n – bell extent, fulfilling change ringing requirements and using given transitions, can be rung if and only if the Cayley color graph of S_n is Hamiltonian

Hamilton

Cayley color graph examples

Example: Cayley color graph for 4–bell with plain changes

Cayley color graph examples

Example: Cayley color graph for Plain Bob Minimus

Even more changes!

References

- Sturman, Robert. The mathematics of bell-ringing (Beamer slides), 2016. Retrieved from <u>http://www1.maths.leeds.ac.uk/~rsturman/talks/</u> <u>gravity_fields.pdf</u>
- Russell, Emily. Change Ringing: The Beautiful Intersection Between Math and Music (YouTube video), 2015. Retrieved from <u>https://www.youtube.com/</u> watch?v=f5GmUxl2NaU
- Intermont, Michele and Aileen Murphy. An Application of Group Theory to Change Ringing. *The College Mathematics Journal* 42(3): 223–228, 2011
- White, Arthur T. Ringing the cosets. *The American Mathematical Monthly* 94(8): 721–746, 1987.
- Johnson, Selmer M. Generation of permutations by adjacent transposition. *Mathematics of Computation.* 17: 282–285, 1963.
- Weber, Fabia. Campanology Ringing the changes. Bachelor Thesis, Swiss Federation Institute of Technology, Zurich.